Caraterização palinológica e físico-química de méis da Serra do Buçaco

Marcelino Inácio CARAVELA¹, Miguel VILAS-BOAS², Paulo António RUSSO-ALMEIDA³ e Paulo SILVEIRA¹

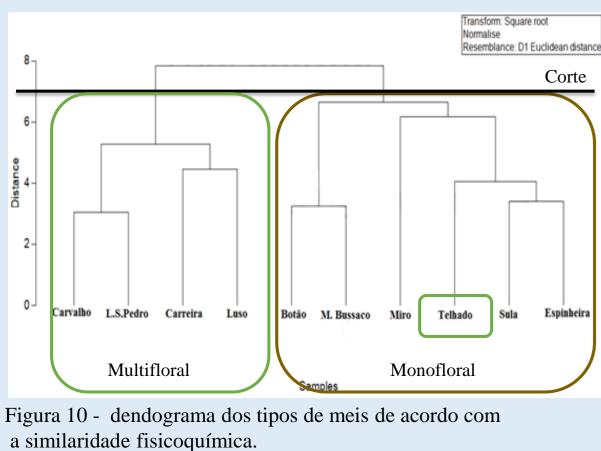
1 Departamento de Biologia & CESAM, Universidade de Aveiro, 3810 - 193 Aveiro, Portugal, 2 Mountain Research Centre (CIMO), Instituto Politécnico de Bragança, Campus de Sta. Apolónia, 5300-253 Bragança, Portugal. 3 Laboratório Apícola — LabApis — Universidade de Trás-os-Montes e Alto Douro (UTAD), Departamento de Zootecnia, 5000-801 Vila Real, Portugal

Introdução

O Mel é uma substância naturalmente açucarada, que é produzido por Apis mellifera, a partir de néctar, secreções de plantas ou de secreções de insetos sugadores de plantas. Dez amostras de mel, provenientes da Serra do Buçaco, foram estudadas, para identificar a origem botânica e avaliar a qualidade das mesmas, esta última mediante a análise de vários parâmetros físico-químicos. Estas análises efetuaram-se para uma caracterização dos méis da Associação dos Apicultores do Litoral Centro, sobretudo porque as mesmas amostras eram empiricamente classificadas e rotuladas pelos apicultores da Associação como méis de origem multifloral.

Em função da origem botânica e de uma análise microscópica especializada, o mel pode ser classificado de origem Monofloral ou Multifloral de acordo com a análise qualitativa. Mas, de acordo com a análise quantitativa, o mesmo mel pode ser classificado como sendo de néctar ou de melada.

Foram objetivos deste trabalho:


- Analisar o espetro polínico e os elementos de melada
- Determinar a humidade, cor, condutividade elétrica e perfil em açúcares
- Avaliar a frescura dos méis
- Determinar as propriedades antioxidantes
- Investigar diferenças físico-químicas entre os tipos de méis

Materiais e Métodos

- Coleção de referência (Palinoteca): produziu-se a partir de grãos de pólen das anteras das flores que foram recolhidas no campo e submetidos ao processo de acetólise (Eardtmn 1971).
- **Método qualitativo:** contou-se cerca de 1200 grãos de pólen de mel, previamente acetolisados, usando o microscópio óptico Olympus CX 31 (Olympus Corporation, Tóquio, Japão) com objetiva de 40x (Ampliação = 400x) em 6 linhas equidistantes, percorridas em toda lâmina de microscopia, tendo os resultados sido expressos em percentagem relativa.
- **Método quantitativo**: fez-se após 2 a 3 g de mel serem homogeneizadas em água quente destilada e 0,1% de fucsina básica em etanol. Filtrou-se em seguida a amostra, através de membrana de celulose. Finalmente, foram contados 500 elementos (grãos de pólen (GP) e elementos de melada (EM)) entre 46 a 102 campos óticos em 10 linhas equidistantes em toda a lâmina de microscopia (Louveaux et al., 1970) e os resultados foram expressos de acordo com Ohe et al. (2004).
- Morfologia polínica: a identificação da ornamentação da exina, número, tipo e posição das aberturas dos grãos de pólen das espécies mais representativas, foram estudadas usando o MEV (Microscópio eletrónico de varrimento) a fim de os certificar (Sajawani et al, 2007).
- Análise fisíco-química: fez-se para avaliar a humidade usando um refratómetro, a cor por colorimetria na escala Pfund, a condutividade elétrica através de um medidor de condutividade, o pH, a acidez livre e lactónica com um titulador automático. Para avaliar a frescura do mel, determinou-se o teor em hidroximetilfurfural, o índice diastásico e a prolina. Para o perfil em açúcares foi aplicado o método de cromatografia líquida. Para a atividade antioxidante utilizou-se um espectrofotómetro para analisar o teor em fenois totais pelo método de Folin-Ciocalteu e o poder redutor. A capacidade bloqueadora de radicais livres determinouse usando um leitor de microplacas contendo diferentes concentrações de amostra de mel em reação com os radicais livres de DPPH.
- Análise estatística: foi usada para verificar a existência de diferenças significativas entre as médias, usando o teste t. Mais adiante, aplicou-se o método de agrupamento e PCA para agrupar e discriminar grupos entre amostras de méis monoflorais e multiflorais de acordo com a similaridade físico-química e dados palinológicos.

Tabela 2— Diferenças significativas dos parâmetros físico-químicos relativamente aos tipos de méis. Nível de confiança p<0.05

Parâmetros	Tipos			Detetaram-se diferenças	
	Monofloral <i>Eucalyptus</i>	Multi. de Eucalyptus com outros taxa	t	<i>P</i> -value	significativas devido às variações dos grupos
рН	3,8±0,2	3,9±0,1	2,314	0,049*	taxonómicos na formação
Maltulose (%)	1,1±0,3	1,6±0,4	2,380	0,045*	dos respetivos méis

Da análise de agrupamentos, pelo método completa, encontrou-se dois grupos de méis em função da similaridade físico-química, como se vê na figura 10. O primeiro é composto por 4 amostras multiflorais e o segundo por 6, sendo 5 monoflorais e uma multifloral.

Agradecimentos. À APLC pela disponibilização de amostras, à Fundação Mata do Buçaco pelo mesmo motivo e autorização para colher amostras de flores dentro da Mata. Ao Instituto Camões pela bolsa de estudos atribuída ao primeiro autor.

Resultados e discussão

1. Análise quantitativa

Tabela I – Dados da análise quantitativa de amostras de méis da serra do Bussaco.

Amostra	npg	nHDE	HDE/P	
Carreira	1137	1258	1,1	
Botão	465	811	1,7	Mistura de néctar e
Sula	837	1070	1,3	melada (EM/GP
Telhado	567	931	1,6	entre 1 e 3)
Espinheira	633	1062	1,7	
Carvalho	746	364	0,5	
Miro	1370	490	0,4	0.4 - 1 - 1 - 1 - 2 - 4 - 4 - 1
Mata de Bussaco	727	518	0,7	Mel de néctar EM/GP < 1
Luso	1466	198	0,1	LIVI/OF \ I
Lam. de S. Pedro	1145	287	0,3	

3. Análise qualitativa, cont.

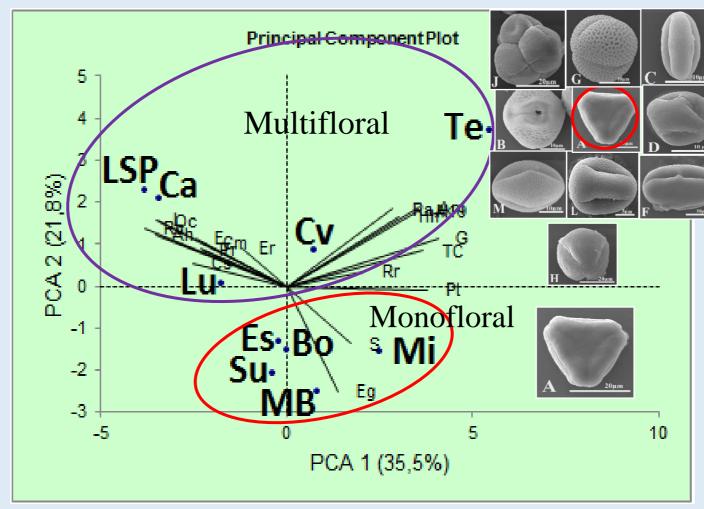


Fig. 2 – Tipos de méis de acordo com a análise qualitativa.

Humidade - Geralmente, o valor permitido é

Figura 3 – Valores de humidade de méis da serra de Buçaco No gráfico 3, o valor máximo foi para Miro, não acima dos limites, indicando um nível aceitável para todas as amostras.

O valor de HMF máximo permitido pela União Europeia é de 40 mgKg⁻¹ e para o índice diastásico é, no mínimo, de 8 DN.

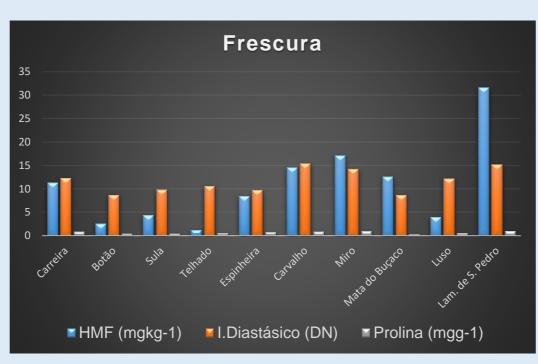
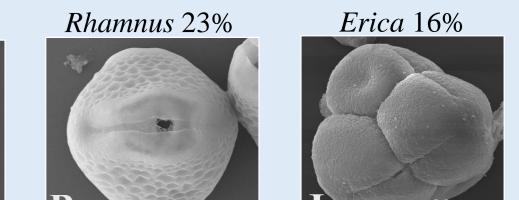



Figura 6 – parâmetros da frescura de méis da Serra do Buçaco De acordo com Bogdanov (2002), o valor da prolina deve estar acima de 0,18 mgg⁻¹. Os valores de HMF, I. Diastásico e da prolina, indicaram níveis aceitáveis de frescura.

encontrados

Eucalyptus 88%

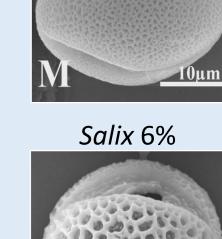


Castanea 36%

2. Análise qualitativa

42 – tipos polínicos não identificados

L33 – identificados


Rubus 10% Echium 12%

Prunus 6%

Trifolium 4%

Quercus 2,4%

Raphanus 8%

Cytisus 7%

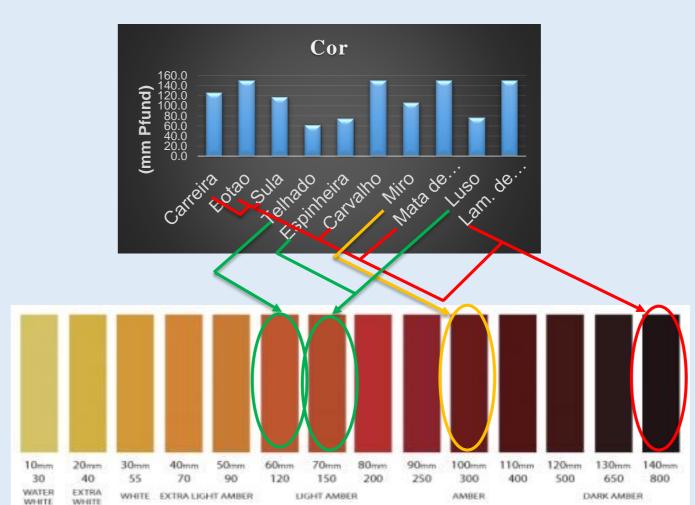
Fig. 2 - Grãos de pólen mais abundantes das 10 amostras de méis da serra do Buçaco, Eucalyptus a Trifolium são espécies poliníferas-nectaríferas e Quercus e a Salix são poliníferas.

4. Componente físico-química

Méis multiflorais de

Eucalyptus e outros

grupos taxonómicos


fr < 70%

Méis monoflorais

de *Eucalyptus*

fr > 70%

A cor variou de âmbar claro a âmbar escuro

- F+G: méis de néctar > 60%;
- F+G: Méis de melada >45% ostras Frut. Gluc. Sac. Tur. Maltu. Malto. Treal. Fru+Glu Fru/Glu Glu/Hum

Car.	39,7	23,1	0,0	2,3	1,3	2,4	0,3	62,9	1,7	1,4
Bot.	43,7	22,0	0,0	1,3	1,0	2,5	0,3	65,7	2,0	1,3
Sul.	39,7	22,1	0,0	1,4	1,1	2,9	0,2	61,8	1,8	1,3
Telh.	41,4	23,6	0,0	1,6	1,2	3,9	0,3	65,0	1,8	1,5
Esp.	38,8	22,1	0,0	1,5	1,5	3,5	0,3	61,0	1,8	1,3
Carv.	41,3	21,5	0,0	1,5	1,8	3,0	0,4	62,8	1,9	1,3
Mir.	39,2	24,9	0,0	1,1	0,7	2,2	0,3	64,1	1,6	1,4
M. B.	44,9	22,9	0,0	1,5	1,2	1,3	0,3	67,8	2,0	1,3
Lus.	37,6	22,3	0,0	1,5	1,6	2,6	0,4	60,0	1,7	1,4
L.S.P.	42,0	22,7	0,0	1,6	2,2	2,8	0,3	64,7	1,9	1,3
Figure 7 - Valores de martil em agrículas de máis de Como de Ducace										

Figura 7 – Valores de perfil em açúcares de méis da Serra do Buçaco Os valores de F+G indicam méis de néctar, apesar dos dados quantitativos indicarem a existência de 5 amostras de misturas entre néctar e melada.

Os valores Glu/Hum mostram que estes méis têm uma lenta dinâmica de cristalização, pois, segundo escuredo et al., (2013), a cristalização é lenta quando a razão entre Glu/Hum for inferior a 1,7%.

Máximo da acidez livre exigido é de 50 meqkg⁻¹ no geral (Diretiva 2001/110/CE, 2001).

Figura 5 – Valores de acidez de méis da serra de Buçaco Foram encontrados valores mais elevados mas inferior ao limite máximo. Estes valore indicam a provável ausência de fermentação.

A ausência de sacarose indica ausência de adulteração.

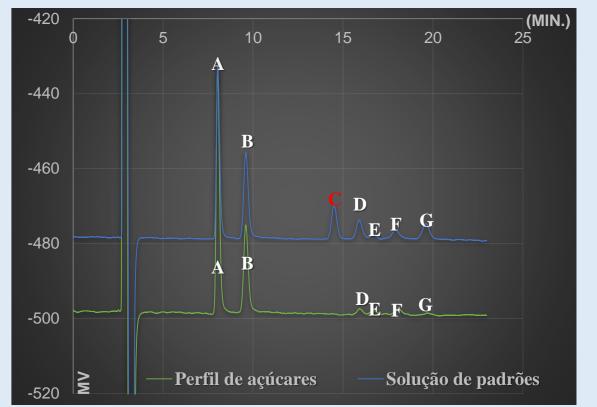


Figura 8 – cromatogramas: A- frutose; B- glucose; C- sacarose; D-Turanose: E- maltulose: F-maltose: G- trealose.

As amostras estudadas apresentaram, com base nos teores de fenóis totais, atividade antioxidante moderada, valores com superiores aos méis de laranjeira, mas inferiores aos de urze.

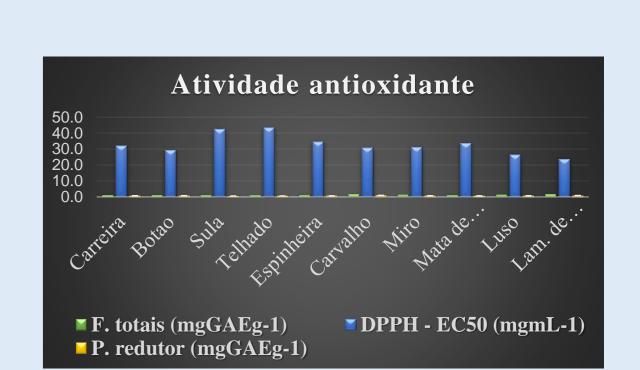
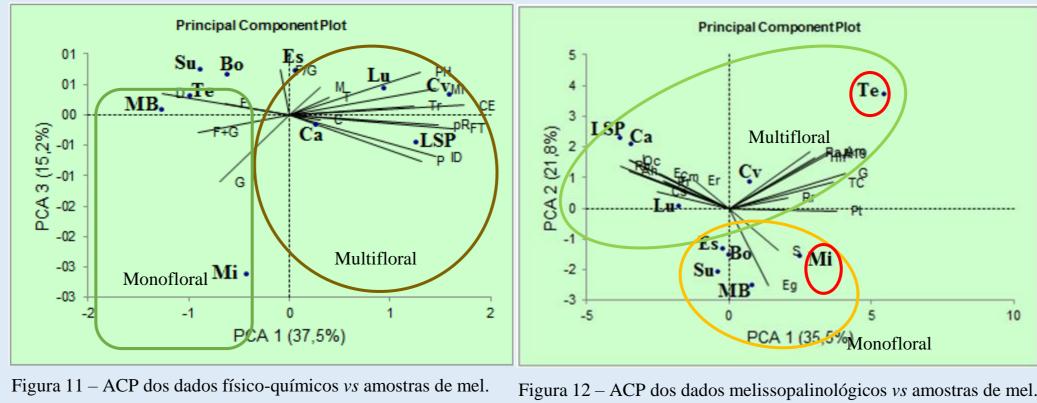



Figura 9 – parâmetros da frescura de méis da Serra do Buçaco A amostra de Carvalho apresentou os valores mais altos de fenóis totais e poder redutor, sendo a melhor das dez amostras estudadas.

Contribuição dos parâmetros físico-químicos e espécies vegetais na similaridade das amostras de méis

O primeiro eixo da componente físico-química (v. Fig 11) explica 37,5 % de variação total e tem uma alta carga positiva para as variáveis, condutividade elétrica, fenóis totais e poder redutor, contrastando-se negativamente com DPPH e frutose+glucose.

O primeiro eixo da compopalinológica, explica 35,5% de variação total e tem uma carga positiva alta para Pterospartum Genista tridentatum e Tipo Cytisus, que contrastam com a carga fortemente negativa para Rubus ulmifolius, Aesculus hipocastanum, Lithrum spp., e Oenanthe crocata.

Conclusão – encontrou-se 5 amostras de méis monoflorais de eucalipto e 5 multiflorais de eucalipto e outros grupos taxonómicos; quantitativamente, em 5 das 10 amostras, houve mistura de méis de nectar e melada e nas restantes 5 apenas néctar. Eucalyptus spp. foi a espécie mais abundante e dominante dos 99 taxa encontrados, que incluíram pólen de Rhamnus, Castanea, Tipo Cytisus, Echium, Erica, Aesculus, Rubus, Prunus e Raphanus. Do ponto de vista físico-químico, as amostras cristalizaram parcialmente, são frescas e sem adulteração, com efeito antioxidante moderado e de cor na faixa de ambar. Confirmou-se que pH e teor em maltulose, dependem da origem botânica do mel. As similaridades físico-químicas, que surgem entre méis monoflorais de uma dada espécie vs multiflorais, podem resultar da presença, mesmo em baixas percentagens, de certos grupos taxonómicos similares.